
Welfare and Profit Maximization with Production Costs

Avrim Blum∗ Anupam Gupta∗ Yishay Mansour† Ankit Sharma∗

Abstract— Combinatorial Auctions are a central problem in
Algorithmic Mechanism Design: pricing and allocating goods to
buyers with complex preferences in order to maximize some
desired objective (e.g., social welfare, revenue, or profit). The
problem has been well-studied in the case of limited supply (one
copy of each item), and in the case of digital goods (the seller can
produce additional copies at no cost). Yet in the case of resources—
oil, labor, computing cycles, etc.—neither of these abstractions is
just right: additional supplies of these resources can be found, but
at increasing difficulty (marginal cost) as resources are depleted.

In this work, we initiate the study of the algorithmic mechanism
design problem of combinatorial pricing under increasing marginal
cost. The goal is to sell these goods to buyers with unknown
and arbitrary combinatorial valuation functions to maximize either
the social welfare, or the seller’s profit; specifically we focus on
the setting of posted item prices with buyers arriving online. We
give algorithms that achieve constant factor approximations for
a class of natural cost functions—linear, low-degree polynomial,
logarithmic—and that give logarithmic approximations for more
general increasing marginal cost functions (along with a necessary
additive loss). We show that these bounds are essentially best
possible for these settings.

1. INTRODUCTION

Combinatorial Auctions are a central problem in Algo-

rithmic Mechanism Design: pricing and allocating goods to

buyers with complex preferences in order to maximize some

desired objective (e.g., social welfare, revenue, or profit).

This problem is typically studied in one of two extreme cases

– the case of limited supply (one copy of each item) or the

case of unlimited supply (the seller can produce additional

copies at no cost). For the case of limited supply, there are

strong negative results (see [7] and the references therein)

unless one makes additional assumptions on the buyers’

valuations (e.g., submodularity [12], [15], [11], [10]). In

contrast, for unlimited supply, which is characteristic of

digital goods, maximizing social welfare is trivial by giving

all the items away for free, and for revenue maximization,

good bounds can be achieved for general buyers [8], [5].

However, in the case of resources—whether oil or computing

cycles or food or attention span—the unlimited-supply case

is too optimistic and the limited-supply case too pessimistic.

∗Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA 15213. This work was supported in part by the National Science
Foundation under grants CCF-0830540 and CCF-1101215, as well as by
the MSR-CMU Center for Computational Thinking.

†School of Computer Science, Tel Aviv University. This research was
supported in part by the Google Inter-university center for Electronic
Markets and Auctions, by a grant from the Israel Science Foundation, by a
grant from United States-Israel Binational Science Foundation (BSF), and
by a grant from the Israeli Ministry of Science (MoS).

More often than not, additional sources can be found, but

at higher cost. Indeed, the classical market equilibrium in

economic theory assumes that as prices rise, supply increases

while demand decreases (giving a unique price which clears

the market). Such a supply curve corresponds to a cost of

obtaining goods that increases with the number of items

desired.

In this work, we initiate the study of this setting where

additional resources can be found, but at increasing marginal
cost, for the algorithmic mechanism design problem of

combinatorial pricing.1 That is, a seller has n goods, and for

each good i there is a non-decreasing marginal cost function

ci(), capturing the fact that additional units of this good can

be obtained, but at an increasing difficulty to the seller per

unit. We specifically focus on the most challenging setting

of posted item prices2 in the face of an unknown series of

buyers, with unknown and arbitrary combinatorial valuation

functions, who arrive online. That is, the seller (e.g., a

supermarket) must assign prices to each of n goods, then

a buyer arrives with some arbitrary combinatorial valuation

function and purchases the bundle maximizing her own

quasilinear utility (valuation minus price). After the buyer

has made her purchase, the seller may adjust prices, then

the next buyer arrives, and so on. In this setting, the seller

cannot ask a buyer to submit her utility function, cannot run

VCG, and cannot charge an admission fee to enter the store.

We consider two natural goals – maximizing social welfare

(the sum of buyers’ valuations on bundles purchased, minus

the costs incurred by the seller for obtaining these items)3

and maximizing profit (the total amount paid by the buyers,

minus the costs incurred by the seller). Our main result is

that using appropriate algorithms we can in fact perform

nearly as well as in the much easier setting of digital goods

for a wide range of cost curves.

A second scenario where our results are applicable is in

the context of network routing with congestion. Specifically,

we would like to maximize the sum of valuations of routed

connections (each user has some pair of terminals and a

1One could also study decreasing marginal costs, though we point out that
modeling decreasing marginal costs in a non-Bayesian adversarial setting
poses difficulties. For example, there are situations where any algorithm
can make positive profit only by initially going into deficit, at which point
the adversary could send in no more buyers.

2By virtue of posted pricing, our mechanisms are inherently incentive
compatible.

3Social welfare is a natural objective if we view the seller as a resource
allocator within a company, and buyers as various units in the company
needing resources.

valuation on receiving a connection) minus the congestion

cost of routing them. The congestion cost can reflect either

the energy required to support the traffic on the network

or the cost of additional infrastructure needed to maintain

the quality of service under increased load. [1] indicate

that energy curves for processors exhibit dis-economies of

scale i.e. energy expenditure is super-linear as a function of

processor speed. Such a scenario is captured by our model of

increasing marginal cost, which for network routing would

mean increasing marginal congestion costs.

We will sometimes refer to marginal cost to the seller of

the kth copy of an item as the production cost of that item.

1.1. Our Results and Techniques

We focus on two goals: maximizing social welfare, and

maximizing profit. Social welfare is the total valuation of

the buyers for their bundles purchased, minus the cost to the

seller of all items sold. That is, it is the total utility of all

players including the seller. Note that because the production

costs are not flat, even to maximize social welfare, one

cannot simply sell items at their production costs; one must

sell at a price higher than the production cost4. This is in

order to ensure that items reach the buyers who want them

(approximately) most. The second goal is to maximize profit,

i.e., the sum of prices charged for items sold minus their

costs to the seller.

For a wide range of reasonable cost functions (linear,

low-degree polynomial, logarithmic), we present a pricing

algorithm that achieves a social welfare within a constant
factor of the optimal social welfare allocation minus a

necessary additive loss. This holds for buyers with arbitrary

combinatorial valuation functions. Furthermore, the algo-

rithm is quite ‘natural’ and reasonable: we price the kth copy

of any good at the production cost of the 2kth copy5. This

algorithm, that we call twice-the-index, appears in Section 3.

We then consider general increasing cost functions, on

which twice-the-index may not give good guarantees. For

these, we present the smoothing algorithm in Section 4 that

gives a logarithmic approximation (again with a necessary

additive loss) for maximizing social welfare, generalizing

results of [6] that hold in the limited-supply case. The main

technique here is to find a “smooth” price curve that does

not make sharp jumps, but that tries to stay within a constant

factor of the cost function. For the case of convex cost

functions, the result yields a logarithmic approximation to

the social welfare, as long as the production cost for the

first logarithmically many copies of all the items is small

compared to the optimum welfare. (This result is essentially

the best possible, with both logarithmic losses unavoidable.)

Our deterministic online algorithms for welfare-

maximization can be converted into randomized algorithms

4See Appendix A.2.1 for an example.
5For illustrative examples showing why some closely related algorithms

fail, see Appendix A.1.

for profit maximization, at a potential further loss of a

logarithmic factor in the approximation. This conversion is

an extension of a result of [4] for the case of single-minded

buyers; the details of this conversion are given in the full

version.

1.2. Related work

There is a huge body of literature on combinatorial

auctions and pricing algorithms: we refer the reader to [7],

[13] and the references therein—in particular, note [6], [15],

[12], [11], [9], [14]. The setting of combinatorial auctions

has been considered both in Bayesian (stochastic),; there is

a large body of work in the Bayesian (stochastic) setting,

where the buyers’ valuations are assumed to come from a

known prior distribution, and non-Bayesian (adversarial) set-

tings. Our work focuses on the non-Bayesian or adversarial

setting.

The algorithms of [9] give truthful mechanisms that

achieve constant approximations to social welfare for

Ω(log n) copies of each item (see also [2]) in the offline
setting. For the online setting, [6] give posted-price welfare-

maximizing algorithms for combinatorial auctions in the

limited supply setting—the approximation guarantees they

give are logarithmic (when there are Ω(log n) copies of each

item) or worse (when there are fewer copies); their results

are (nearly) tight for the online limited-supply setting. The

smoothing algorithm presented in Section 4 generalizes the

results of [6] to more general increasing costs and not just

0-∞ costs (i.e. the limited supply case).

The work of [4] shows how to convert deterministic (or

some special kind of randomized) online mechanisms for al-

location problems into (randomized) posted-pricing schemes

that achieve (ρ + log Vmax)-fraction of the optimal profit

possible, where the online algorithm is ρ-competitive for the

allocation problem and Vmax is the maximum valuation of

any agent over the set of items. We extend their analysis to

convert our social welfare maximizing algorithms to profit

maximizing algorithms. The details of this conversion are

given in the full version.

2. MODEL, NOTATION, AND DEFINITIONS

We consider the following setting. A seller is selling a

set I = {1, . . . , n} of n items to a sequence B of m
buyers who arrive one at a time. The seller can obtain (or

produce) additional copies of each item but at increasing

(or at least non-decreasing) production cost; specifically, let

ci(k) denote the production cost to the seller for the kth

copy of item i. For each item i, let Ci(k) be the cumulative

cost for the first k copies—i.e., Ci(k) =
∑

k′≤k ci(k
′). Let

cinv
i (p) be the number of copies of item i available before

the production cost exceeds p; in case ci(·) is invertible, it

follows that cinv
i (p) = c−1

i (p).
Before each buyer arrives, the seller may mark up the

costs to determine a sales price πi for each item i. Every

buyer b has some (unknown to the seller) valuation function

vb : 2
I → R over possible bundles of items, and purchases

the utility-maximizing bundle for herself at the current

prices. That is, buyer b purchases the set S maximizing

vb(S) −
∑

i∈S πi. After a buyer finishes purchasing her

desired set, the seller may then readjust prices, and then

the next buyer arrives, and so on.

For any particular sequence of buyers, let opt be the

allocation that maximizes the social welfare. Clearly, the

social welfare achieved under opt, denoted by W (opt), is

an upper bound on both the maximum social welfare and

maximum profit achievable by any online algorithm.

For any algorithm alg, W (alg) shall denote the social

welfare attained through the algorithm. The algorithm shall

determined a pricing scheme for the seller and πi(k) shall

denote the sales price charged for the kth copy of item i ∈ I.

While this could in principle depend on other items sold, for

all our algorithms it will depend only on k and the cost-curve

for the item. xi shall denote the total number of copies of

item i sold by the algorithm, and P f
i shall denote the price

of the first unsold copy of item i—i.e., P f
i = πi(xi + 1).

We shall denote the total production cost suffered by the

algorithm by C(alg) and and the revenue made by P (alg).
profiti shall denote the profit made by the algorithm from

the sales of item i. The total profit made by the algorithm

is
∑

i∈I profiti = P (alg)− C(alg).
Since xi are the total number of copies sold by the algo-

rithm alg for item i, therefore, C(alg) =
∑

i∈I
∑xi

k=1 ci(k),
P (alg) =

∑
i∈I

∑xi

k=1 πi(k) and profiti =
∑xi

k=1 πi(k) −∑xi

k=1 ci(k).
The total valuation of buyers on their allocated bundles

under alg is denoted by V (alg) =
∑

b∈B vb(alg(b)) where

alg(b) denotes the set of items bought by buyer b from the

algorithm alg. The social welfare made by the algorithm

W (alg) is V (alg)− C(alg).
For opt, the welfare-maximizing allocation, λi denotes

the number of copies of item i allocated in opt. C(opt),
V (opt) and W (opt) are defined analogously.

2.1. A Structural Lemma

A basic challenge for maximizing social welfare in the

presence of increasing production costs is that if one charges

too little, then items may be purchased by an initial sequence

of buyers whose valuations are too low to generate much

social welfare, until the production cost has jumped to a

point where only very costly items remain that are out of

reach of the subsequent high valuation buyers. On the other

hand, if one charges too much, then one loses the opportunity

to make certain sales. This problem is compounded by

the fact that buyers may have very different combinatorial

preferences—one does not want to “run out” of cheap copies

of one item for buyers who may have high valuation on

large sets containing that item. In the following sections, we

describe two pricing algorithms for addressing these issues

cost curve ci()price curve πi()

Pf
i = ci(xi + 1)

xi + 1
cinvi (Pf

i)
xi

Figure 1. Structural Lemma: if the lightly shaded area is bounded by a
small multiple of the doubly shaded area, then we get good social welfare.
xi is the last sold copy of the item and xi+1 is the first unsold copy. The
lower continuous curve is the cost curve while the upper dashed curve is
the price curve.

and achieving good social welfare guarantees. In order to

analyze the pricing algorithms, we first prove a key structural

lemma regarding pricing under increasing production costs;

this lemma will be used for all our subsequent analyses.

Lemma 2.1. For a pricing algorithm alg with non-
decreasing price functions πi suppose there exists some
α ≥ 1 and β ≥ 0 such that for every allowed set of values
of the final prices P f

i ,∑
i∈I

∑cinv
i (P f

i)
k=1 (P f

i − ci(k)) ≤ α
∑

i∈I profiti + β , (1)

then on every instance of buyers

W (alg) ≥ 1
α (W (opt)− β) .

The term
∑cinv

i (P f
i)

k=1 (P f
i − ci(k)) denotes the maximum

possible social welfare which can be achieved by buyers

who have valuation P f
i for item i and zero for everything

else. To see this note that (i) P f
i −ci(k) is the contribution to

social welfare if the kth of item i is allocated to such a buyer

and, (ii) the contribution P f
i −ci(k) remains non-negative as

long as P f
i ≥ ci(k) which is true only for k ≤ cinv

i (P f
i). The

theorem says that if for every possible set of final prices, we

can bound such a social welfare summed over items by the

profit generated by the algorithm, then for every sequence

of buyers the algorithm gets a good social welfare compared

to the optimum.

Graphically, as shown in Figure 1,
∑cinv

i (P f
i)

k=1 (P f
i − ci(k))

is the area between the production curve ci() and the dotted

line parallel to x-axis, marked by P f
i = ci(xi + 1), (the

lightly shaded area) while profiti is the region between the

price curve and production curve (the doubly shaded area).

Proof of Lemma 2.1 : When buyer b ∈ B arrives, let x
(b)
i

be the number of copies of item i sold before b comes in.

Hence, the price b sees for item i would be πi(x
(b)
i +1); for

brevity we denote this qb(i), and for a set S ⊆ I, qb(S) :=∑
i∈S qb(i). The utility of a set S for buyer b therefore is

vb(S)−qb(S). Since each buyer buys the set that maximizes

her utility, hence in particular it implies that the set alg(b)
which buyer b bought from alg must be giving her at least

as much utility as the set opt allocated to her i.e.

vb(Sb)− qb(Sb) ≥ vb(S
∗
b)− qb(S

∗
b) .

Summing over all buyers, we get∑
b∈B(vb(Sb)− qb(Sb)) ≥

∑
b∈B(vb(S

∗
b)− qb(S

∗
b)) .

Adding and subtracting C(alg) and C(opt) on the left hand

and right hand sides respectively, we get(∑
b∈B vb(Sb)− C(alg)

)− (∑
b∈B qb(Sb)− C(alg)

)
≥(∑

b∈B vb(S
∗
b)− C(opt)

)− (∑
b∈B qb(S

∗
b)− C(opt)

)
.

Identifying the term
∑

b∈B vb(Sb) − C(alg) with W (alg),
the term

∑
b∈B qb(Sb) − C(alg) with

∑
i∈I profiti and the

term
∑

b∈B vb(S
∗
b)− C(opt) with W (opt) we get

W (alg)−
∑
i∈I

profiti ≥W (opt)− (∑
b∈B

qb(S
∗
b)−C(opt)

)
.

(2)

Since prices are non-decreasing, hence the price faced

by any buyer cannot be more than the final price

of the various items. Therefore for each buyer b,

qb(S
∗
b) =

∑
i∈S∗

b
πi(x

(b)
i + 1) ≤ ∑

i∈S∗
b
πi(xi + 1) =∑

i∈S∗
b
P f
i . Hence, the term

∑
b∈B qb(S

∗
b) is at most∑

b∈B
∑

i∈opt(b) P
f
i =

∑
i∈I(P

f
i · λi) where recall that λi

denotes the number of copies of item i allocated under opt.
Moreover, since C(opt) =

∑
i∈I

∑λi

k=1 ci(k), we have∑
b∈B

qb(S
∗
b)− C(opt) ≤∑

i∈I(P
f
i · λi)−

∑
i∈I

∑λi

k=1 ci(k)

=
∑

i∈I
∑λi

k=1(P
f
i − ci(k)) . (3)

The quantity (P f
i − ci(k)) is non-negative until ci(k) ≤

P f
i , that is it is non negative for k ≤ cinv

i (P f
i). Hence, we

have
∑

b∈B qb(S
∗
b)−C(opt) ≤∑

i∈I
∑λi

k=1(P
f
i − ci(k)) ≤∑

i∈I
∑cinv

i (P f
i)

k=1 (P f
i − ci(k)). Therefore using Equation (2)

we get

W (alg)−
∑
i∈I

profiti ≥W (opt)− (∑
b∈B

qb(S
∗
b)− C(opt)

)
≥W (opt)−∑

i∈I
∑cinv

i (P f
i)

k=1 (P f
i − ci(k)) .

If
∑

i∈I
∑cinv

i (P f
i)

k=1 (P f
i − ci(k)) ≤ α

∑
i∈I profiti + β, then

using above equation we get

W (alg)−∑
i∈I profiti ≥W (opt)− (α

∑
i∈I profiti + β)⇒

W (alg) + (α− 1)
∑
i∈I

profiti ≥W (opt)− β .

Finally using the social welfare generated by the algorithm

is at least the profit made, i.e. W (alg) ≥ ∑
i∈I profiti, we

get the desired result W (alg) ≥ (W (opt)− β)/α

In Section A.1 we present a variant of the structural

lemma that will be useful for the analysis of the smoothing

algorithm presented in Section 4.2. In the following section,

we give pricing strategies that satisfy Lemma 2.1 (or its

variant) for suitable α, β.

3. ALGORITHM: PRICING AT TWICE THE INDEX

The first two ideas for pricing items with production costs

are perhaps to (a) sell at cost, or (b) sell at some constant

times the cost; however, these schemes fail even for simple

cost functions like linear and logarithmic production costs,

respectively (Appendix A.1). In this section, we consider the

next natural pricing scheme: The price πi(k) of the kth copy
of an item is the production cost of the (2k)th copy. I.e.,

πi(k) := ci(2k).

There is nothing special about pricing at twice the index,

other factors would work as well, just giving slightly dif-

ferent bounds. We shall analyze this algorithm for function

classes including polynomial ci(x) = xd and logarithmic

ci(x) = ln(1+x). Since these functions are strictly increas-

ing and hence invertible, hence we shall have cinv
i (ci(x)) = x

for all x ≥ 0. To analyze this algorithm, we shall use the

result of Lemma 2.1.

Define Ai(xi) :=
∑cinv

i (P f
i)

k=1 (P f
i − ci(k)). To apply

Lemma 2.1, we will show that ∀xi ≥ 0, Ai(xi) ≤
α · profiti(xi) + βi and thereby get

∑
i∈I Ai(xi) ≤

α
∑

i∈I profiti(xi) + β where β =
∑

i∈I βi.

Since the price πi(k) of the kth copy is ci(2 k), hence

the profit made from the sales of such of a copy is

ci(2 k) − ci(k). Further, since xi copies of item i have

been sold, therefore, P f
i = ci(2 (xi + 1)) and hence

cinv(P f
i) = 2xi + 1. Therefore, when pricing at twice the

index, we have Ai(xi) =
∑2(xi+1)

k=1 (ci(2(xi + 1)) − ci(k))
and profiti(xi) =

∑xi

k=1(ci(2k)− ci(k)).

3.1. Performance on some cost functions

We now show that for some “well-behaved” classes of

functions, we get Ai(x) ≤ α · profiti(x) + βi; the βi term

will usually depend on the production cost of the first few

copies of the items—hence we will guarantee that we get

a multiplicative α-fraction of the welfare if we ignore the

production cost of the first few copies.

• Linear production costs: ci(x) = aix + bi for some

constant ai, bi ≥ 0, then we have Ai(x) = ai(x +
1)(2x + 1), and profiti(x) =

1
2aix(x + 1), and hence

Ai(x) ≤ 6profiti + ai. Lemma 2.1 implies that

W (alg) ≥ 1
6

(
W (opt)−∑

i∈I ai
)

= 1
6

(
W (opt)−∑

i∈I(ci(2)− ci(1))
)
.

This result, with suitably modified guarantees, can eas-

ily be extended to the case where the actual production

cost lies between two linear curves whose slopes are

within a constant factor of each other.

• Polynomial production costs: ci(x) = aix
d for d >

1. Then Ai(x) ≤ ai
d

d+1 (2(x + 1))d+1, whereas

profiti(x) ≥ ai
1

d+1 (2
d−1)xd+1, so some algebra im-

plies that Ai(x) ≤ 12 d profiti(x)+2d+1 (d+2)d+1 ai.
Hence

W (alg) ≥ 1
12 d

(
W (opt)− 2 (d+ 2)d+1

∑
i∈I ci(2)

)
.

Such a bound also holds for ci(x) being a polynomial of

degree at most d with positive coefficients. The additive

loss of 2O(d log(d)) should be compared to the lower

bound of Ω(2d/d) in Corollary A.3

• Logarithmic production costs: ci(x) = ln(1 + x). By

algebra, Ai(x) ≤ (2x+3), and profiti(x) ≥ ln(32)x, so

Ai(x) ≤ 2
ln(3/2) profiti(x)+3, and Lemma 2.1 implies

W (alg) ≥ ln(3/2)
2 (W (opt)− 3|I|) .

In the full version of the paper, we show that in the

guarantees given above, gains in the multiplicative factor

can be made while trading-off commensurate losses in the

additive loss terms. Further, in Appendix A.4, we show

that without any other information (like an estimate on

the optimum welfare), no deterministic algorithm can give

a purely multiplicative loss. Finally, in Appendix A.3, we

show that twice-the-index fails for some increasing cost

functions—e.g., when the production cost is zero for B items

and ∞ thereafter. Hence, in the next section, we give an

algorithm for increasing production costs.

4. GENERAL INCREASING COST FUNCTIONS

In this section, we present an algorithm that applies

to general increasing cost functions, giving a logarithmic

approximation minus an additive term that depends on the

cost function (Theorem 4.4)6. For the case of convex cost

functions, the analysis allows us to give a more explicit form

for the additive loss (Corollary 4.6). In fact for the case of

convex production costs, we get a multiplicative logarithmic

approximation to W (opt) as long as the production cost

of the first few logarithmic copies of all the items is small

compared to W (opt). For the limited-supply setting, if we

have Ω(log nm) copies of each item, the additive loss is zero

and the algorithm gets a logarithmic fraction of the optimal

social welfare like in [6].

4.1. Intuition

Ideally, we would like to set prices which are sufficiently

far above the cost curve (so that we generate a large social

welfare), yet not be too far above it (else the high prices may

result in no sales, causing a large additive loss). Hence, we

6An alternative bi-criteria guarantee can be achieved through a simple
discretization of the cost function that allows us to reduce to the case of
step functions and use the algorithm of [6]. The resulting pricing scheme
gives a logarithmic approximation against the optimum on a higher cost
curve. Details are in the full version.

run into problems when the cost curve increases sharply—

and the intuitive goal is to create a price curve which

smooths out these sharp changes in the cost curve while

staying “close” to it.

The smoothing algorithm takes the cost curve, and creates

a price function which is a monotone step function: copies

of the item are grouped into intervals, with all copies in

an interval having the same price. We call these intervals

“price intervals”. The algorithm creates the price curve from

right to left. If we think of �i as the effective number of

copies of item i and Z as the highest price, then the �thi
copy is priced first at price Z through creation of the price

interval [
 23 �i�,∞)7, with items in this interval priced at

Z; subsequently, price intervals are created progressively

moving leftwards until we have priced the first copy. At

each point, we use the intuition from above: if the price

is much higher than the cost, we set the price for the new

interval such that the price-cost gap is slashed by a factor

of 2, else we set the price to maintain a sufficient gap from

the cost.

4.2. The smoothing algorithm

Before we give the algorithm (in Figure 2), let us give

some definitions; we urge the impatient reader to jump to

Section 4.3 to get a quick rough feel of the algorithm. We

assume that the cost of the first copy of every item is 0

i.e. ∀i, ci(1) = 08. Define Umax, the maximum welfare any

single buyer can achieve:

Umax(I,B) = maxb∈B maxT⊆I
(
vb(T)−

∑
i∈T ci(1)

)
,

(4)

which equals maxb∈B maxT⊆I vb(T) because ci(1) = 0.

Note that the optimal social welfare, W (opt), lies between

Umax and m · Umax. The smoothing algorithm requires a

parameter Z which satisfies Z ∈ (Umax, Umax/ε].
9

Define �i = min{cinv
i (Z),m} and Bi = �12 log(4n�i/ε)
.

At a high level, think of �i as being the “effective number” of

copies of item i available, and Bi as the “number of different

price levels” we create in our price curve. Define cinvt
i (p) to

be the “truncated” value min{cinv
i (p), cinv

i (Z),m}, it is the

maximum number of copies of item i that opt can allocate

before the production cost exceeds p (Corollary A.1). Note

that using cinvt
i (as opposed to using cinv

i) is a technicality;

one can imagine cinvt
i ≈ cinv

i for a first read. Define

widthi(p) :=
⌊ cinvt

i (p)
Bi

⌋
; this function will determine the

number of copies we group together in a price interval. We

assume that

�i ≥ Bi ≥ 12; (5)

see the full version for why this is without loss of generality.

7We abuse notation slightly by denoting the integer interval {r, r +
1, . . . , s− 1} as the half-open real interval [r, s).

8 In the paper’s full version we show that this is without loss of generality.
9We can remove this assumption at a further loss of

O(logW (opt) (log logW (opt))2) in the approximation guarantee [5].

1: for all x ≥
 23 �i�, set πi(x) := Z
2: set x←
 23 �i�
3: while x > 1 do
4: if widthi(πi(x)) ≥ 1 then
5: set x′ ← max{x− widthi(πi(x)), 1}
6:

set Δ =

{
πi(x)−ci(x)

2 if πi(x) ≥ 3 ci(x)
ci(x)
2 otherwise

7: for all y ∈ [x′, x) , set πi(y) := ci(x) + Δ
8: set x← x′

9: else
10: for all y ∈ [1, x), set πi(y) := πi(x)
11: set x← 1

Figure 2. Smoothing algorithm

Let πi : Z+ → R+ be the price function and let Ji denote

the set of price intervals for item i, and with zi = |Ji|. We

refer to the qth interval of item i as Jiq , with Ji1 being

the price interval that contains the first copy of item i, and

Jizi = [
 23 �i�,∞). Let πi(Jiq) be the price of the copies

in the interval Jiq . Depending on the production curve, two

consecutive price intervals may have the same price. Also,

we will formally state later that the prices we generate are

non-decreasing, and always stay above the production cost

for all copies less than �i.

4.3. The main ideas

Smoothing: Step 6 ensures a smooth price curve: if the

price is more than thrice the production cost, we slash the

gap between the price and production cost by two else we

allow the price to stay at a sufficient gap from the cost.

Price Interval Size : The idea of the analysis is to show

that whenever the number of copies sold moves from a lower

price interval to a higher one, the social welfare generated by

selling copies at the lower price is enough to be competitive

against opt, even if we sell no further copies at the higher

price. Consequently, the size of a price interval Jiq must

depend on the price of items in the next interval Ji q+1. It

turns out that to get a multiplicative approximation factor of

O(Bi), if the price of copies in Ji q+1 were P , it suffices to

set the width of Ji q to be
 cinvt
i (P)
Bi

� = widthi(P). Here is a

simple special case that illustrates why: suppose only item i
was being sold and we sold all copies from Jiq but no copies

from interval Ji q+1. We would like to apply Lemma 4.4.

The final price P f
i in that case is P = πi(Ji q+1). Staring at

the left hand side of Equation (1), we see that it is at most

P ·cinvt
i (P). Since we sold all the copies in price interval Jiq ,

we sold at least |Jiq| =
 c
invt
i (P)
Bi

� many copies, each at profit

at least P/6 (something we will prove later). Hence on the

right hand side of Equation (1), the term profiti is at least

P ·
 cinvt
i (P)
Bi

�/6. Putting α = O(Bi) we satisfy Equation (1)

and thereby get an O(Bi) approximation. Since the width

of Jiq depends on the price of Ji q+1, it is natural that our

pricing algorithm creates price intervals from right to left.
Termination: The algorithm terminates in one of two

ways: either while creating such appropriately sized price

intervals, we hit the first copy (i.e., x′ ← 1 in Step 5, and

then the loop condition fails in Step 3) or the price p of some

price interval is low enough that p < ci(Bi), which implies

cinvt
i (p) < Bi (the proof of implication appears later) and

therefore widthi(p) =
⌊ cinvt

i (p)
Bi

⌋
< 1: this causes x ← 1 in

Step 11. In the latter case, the price has become low enough

that we can simply group all remaining copies into the lowest

priced interval Ji1 at price p. The subsequent analysis will

often have to separately consider these two cases: whether

x← 1 is achieved in Step 5 or in Step 11.

Figure 3. The figure shows the pricing curve drawn by the smoothing
algorithm for the production curve ci(x) = x3. The lower line is the
production curve. The upper thicker line is the pricing curve. We can
observe that the price curve is flat towards the extreme right; this flat region
contains the right-most price interval. Towards the extreme left the price
curve appears to be a smooth curve. The inset shows the individual price
intervals.

4.4. The Analysis

Let us call an interval Jiq = [r, s) to be full-sized if its

width equals widthi(πi(s)). Note that the right-most interval

Jizi is not full sized since it semi-infinite. Further, the left-

most interval Ji1 may not be full-sized either because the

algorithm ran out of copies, or the price became too low so

that all remaining unpriced copies were bunched together.

We first show that if we sell at least |Ji1|+ |Ji2| copies of

item i, i.e., we have sold at least one full-sized interval, we

get a good approximation factor for the reasons we discussed

in Section 4.3. This is proved in Lemma 4.2.

Then we consider the case when the number of items sold

is less than |Ji1|+ |Ji2|: in this case we cannot show a good

multiplicative loss. Instead, we show that the price of items

in the first two intervals is small in this case, which bounds

the additive loss. This is proved in Lemma 4.5. Finally, our

main result Theorem 4.4 follows from these two lemmas.

All the intervals except the leftmost Ji1 and rightmost

Jizi ones are created in a similar fashion; intervals Ji1 and

Jizi have to treated as special cases at several points in the

analysis. Also, the analysis which follows from this point

onwards up till (and not including) Theorem 4.4 is per item.

Hence the subscript i in the terms involved is irrelevant

from the point of analysis and is present only to maintain

uniformity in presentation.

To begin, we state some useful properties of the prices

and widths of the intervals (proof is in the full version).

Lemma 4.1 (Prices and Widths). The following facts about
interval prices hold for the intervals in Ji for any non-
decreasing cost curve:

a. For any Jiq = [r, s) such that q �= zi, πi(Jiq) ≥
3
2 ci(s). Hence, πi(x) ≥ 3

2 ci(x) for x ∈ Jiq .
a’. If the cost curve is convex, πi(
 23 �i�) ≥ 3

2 ci(
 23 �i�).
b. For consecutive Jiq and Ji q+1 and q �= zi − 1, we
have πi(Jiq) ≤ πi(Ji q+1) ≤ 2πi(Jiq). If the cost curve
is convex the claim also holds for q = zi − 1.

c. All price intervals Jiq = [r, s) (q /∈ {1, zi}) have
|Jiq| = widthi(πi(s)) = widthi(πi(Ji q+1)).

Lemma 4.1(a) states that the price of any copy is

sufficiently far from the production cost of that copy.

Lemma 4.1(a’) states the same claim about the left end

of the right-most interval Jizi in case the cost curve is in

addition convex. Lemma 4.1(b) states the price of copies

in the interval Ji q+1 is higher than that of Ji q , but not

too far from it. Lemma 4.1(d) states that all price intervals

except possibly the left-most and the right-most are full-

sized. Armed with these facts, we first show that if “many”

copies of item i are sold, then we are in good shape.

The other case where “few” copies are sold, is dealt with

subsequently.

4.4.1. The Case of Many Copies.: Suppose we sell all
copies in some interval Jiq for q > 1: then we get that

the profit made from that interval alone gives us a good

approximation.

Lemma 4.2. If the number of sold copies xi of item i is at
least |Ji1|+ |Ji2|, then P f

i ·cinvt
i (P f

i) ≤ 12Bi ·profiti, where
profiti :=

∑xi

k=1(πi(k)− ci(k)).

Proof: Let q be the largest integer such that Jiq = [r, s)
is completely sold out; hence q ∈ [2, zi). The final price

is P f
i = πi(Ji q+1) = πi(s). We want to show we make

a reasonable profit from the sales of copies in Jiq . From

Lemma 4.1(c), there are widthi(πi(s)) many copies in Jiq .

For each of these copies k ∈ [r, s), the profit is πi(k) −
ci(k) ≥ πi(k)− ci(s), because costs are non-decreasing.

However, by Step 7 of the pricing algorithm, for all k ∈
Jiq , πi(k) = ci(s)+Δ, where Δ is determined by Step 6.

• Either πi(s) ≥ 3ci(s), Δ = 1
2 (πi(s) − ci(s)) ≥

1
3 πi(s),
• Or πi(s) < 3ci(s), Δ = ci(s)/2 > 1

6 πi(s).

So, we make a profit of at least πi(s)/6 from each of the

widthi(πi(s)) =
 c
invt
i (πi(s))

Bi
� many copies in Jiq:

profiti ≥ πi(s)
6 ·
 cinvt

i (πi(s))
Bi

� ≥ πi(s)·cinvt
i (πi(s))

12Bi
,

where the last inequality is because
t� ≥ t/2 for t ≥ 1.

Plugging in P f
i = πi(s) completes the proof.

4.4.2. The Case of Few Copies: Now suppose item i is

such that the number of copies we sell either lies within the

left-most interval Ji1, or only covers a small fraction of the

second interval Ji2: the argument given above does not hold

in that case. However we can show the following result.

Lemma 4.3. If the number of sold copies xi of item i is
less than |Ji1| + |Ji2| then πi(P

f
i) · cinvt

i (P f
i) ≤ πi(Ji2) ·

cinvt
i (πi(Ji2)).

Proof: Since we end up selling less than |Ji1| +
|Ji2| copies, hence the final price P f

i is at most

max{πi(Ji1), πi(Ji2)} which is πi(Ji2) since Lemma 4.1(b)

tell us that πi(Ji1) ≤ πi(Ji2). Hence, P f
i · cinvt

i (P f
i) ≤

πi(Ji2) · cinvt
i (πi(Ji2)) (cinvt

i (p) is non-decreasing function

of p).

4.4.3. Finishing the Analysis: Lemma 4.2 and Lemma 4.3

together give us the main result of this section.

Theorem 4.4. The social welfare W (alg) achieved by the
smoothing algorithm on a non-decreasing cost curve given
an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥ W (opt)−∑
i∈I πi(Ji2) · cinvt

i (πi(Ji2))

12 maxi∈I Bi
,

where Bi := �12 log(4n�i/ε)
, and �i := min{cinv
i (Z),m}.

Proof: For each item i, depending on the number of

copies sold, either Lemma 4.2 or Lemma 4.3 applies, which

implies that for each i ∈ I,

P f
i · cinvt

i (P f
i) ≤ 12Bi · profiti + πi(Ji2) · cinvt

i (πi(Ji2)).

Summing over all items i, we get∑
i∈I

P f
i ·cinvt

i (P f
i) ≤ 12 max

i∈I
Bi·profiti+

∑
i∈I

πi(Ji2)·cinvt
i (πi(Ji2).

Applying Corollary A.1, we get

W (alg) ≥ W (opt)−∑
i∈I πi(Ji2)·cinvt

i (πi(Ji2))

12maxi∈I Bi
,

which completes the proof.

4.5. Convex cost curves

The analysis in this section holds only for convex cost

curves. The crucial lemma which we will prove in this

section is:

Lemma 4.5. For a convex cost curve, πi(Ji2) ·
cinvt(πi(Ji2)) ≤ max{Bi ci(Bi),

ε Z
2n}.

which will suffice to prove the following result.

Corollary 4.6. The social welfare W (alg) achieved by the
smoothing algorithm on a non-decreasing convex cost curve
given an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥ W (opt)/2−∑
i∈I Bi · ci(Bi)

12 maxi∈I Bi
,

where Bi := �12 log(4n�i/ε)
, and �i := min{cinv
i (Z),m}.

Proof: Putting Theorem 4.4 and Lemma 4.5 together,

W (alg) ≥ W (opt)−ε Z/2−∑
i∈I Bi·ci(Bi)

12 maxi∈I Bi
.

Using εZ ≤ Umax ≤W (opt), we get the desired result.

We now need to prove Lemma 4.5. The pricing algorithm

terminates when it has priced all the copies, i.e. x is set to 1

and the if condition in Step 3 becomes false. x can be set

to 1 either in Step 8 (preceded by x′ being set to 1 in Step 5)

or in Step 11. We consider these two cases separately.

− Algorithm terminates through Step 11: Lemma 4.8

proves that cinvt
i (πi(Ji2)) · πi(Ji2) < Bi · ci(Bi).

− Algorithm terminates through Step 5: Lemma 4.12

proves that cinvt
i (πi(Ji2)) · πi(Ji2) <

εZ
2n .

Proof of Lemma 4.5 : The algorithm terminates ei-

ther through Step 5 or Step 11 and Lemma 4.12 and

Lemma 4.8 together indicate that πi(Ji2) · cinvt(πi(Ji2)) ≤
max{Bi ci(Bi),

ε Z
2n}.

Before proving Lemma 4.8 and Lemma 4.12, we state

and prove the following lemma that characterizes the cir-

cumstances under which the algorithm terminates in either

condition.

Lemma 4.7. The pricing algorithm terminates through
Step 11 if and only if πi(Ji2) < ci(Bi).

Proof: Let Ji2 = [s, r). We first prove that if πi(Ji2) <
ci(Bi), then the algorithm terminates in Step 11. If πi(s) =
πi(Ji2) < ci(Bi), then it implies that cinv

i (πi(s)) < Bi, and

by definition of cinvt(), cinvt
i (πi(s)) < Bi which implies that

widthi(πi(s)) =
 c
inv
i (πi(s))

Bi
� = 0. Hence, right after creation

of Ji2, when the algorithm checks for the if condition on

point s in Step 4, it shall evaluate to false and therefore, the

algorithm shall terminate through Step 11.

To prove the other direction, if the algorithm terminates

through Step 11, then it must be the case that the if

condition in Step 4 evaluated to false for some x. Further, x
must be the left-end point of Ji2. This is because once the if

condition evaluates to false, the algorithm jumps to Step 11

and creates a single price interval containing all copies that

have not been priced yet and it includes the first copy and

hence, this price interval must be Ji1. So x must be the

left-end point of the price interval just after Ji1, i.e. Ji2.

Now, widthi(πi(x))= widthi(πi(Ji2))=
 c
invt
i (πi(Ji2))

Bi
� <

1 implies that
cinvt
i πi(Ji2))

Bi
< 1 and so cinvt

i (πi(Ji2)) < Bi. By

definition of cinvt
i (), this implies that min{cinv

i (πi(Ji2), �i} <
Bi. Since by Equation (5), �i ≥ Bi, it must be the case

cinv
i (πi(Ji2)) < Bi, which by definition of cinv

i () can occur

only if πi(Ji2) < ci(Bi).
We now prove Lemma 4.8 and Lemma 4.12 that treat the

two conditions under which the algorithm can terminate.

Algorithm terminates through Step 11: The proof that

price of Ji2 is small follows almost immediately in this case.

Lemma 4.8. If the algorithm terminated through Step 11
then πi(Ji2) · cinvt

i (πi(Ji2)) < ci(Bi)Bi.

Proof: If the algorithm terminated through Step 11, then

Lemma 4.7 implies that πi(Ji2) < ci(Bi). By definition of

cinvt
i (), this implies that cinvt

i (πi(Ji2)) < Bi and hence we

get the result.

Algorithm terminates through Step 5: We will prove

that price of the interval Ji2 is ‘small’ by showing that

relative to the price of right-most interval Jizi , the prices

for the subsequently created intervals on its left, have been

slashed sufficiently often. For item i, label a copy x close if

πi(x) < 3 ci(x), else label it as far. Depending on which of

r and s are close or far, mark a price interval Jiq = [r, s) as

one of {(C,C), (F,C), (C,F), (F, F)}. Note that the right-

most interval Jizi is not marked since it is semi-infinite.

The following lemma indicates that in case prices are ‘far’

from the production cost, the algorithm slashes the prices

exponentially.

Lemma 4.9. If a contiguous sequence of price intervals
Jiq, Ji q+1, · · · , Ji q+t−1 are all marked (F, F) and Ji q+t

is marked (F,C), then πi(Jiq) ≤ (23)
t πi(Ji q+t).

Lemma 4.10 states that if we ever have a price interval

that is marked (F,C), there are ‘many’ price intervals to the

left of that interval. Lemma 4.11 states that there are ‘many’

intervals to the left of the right-most interval Jizi .

Lemma 4.10. Consider an interval Jiq = [r, s) with q �= zi
that is marked (F,C). If the algorithm terminated through
Step 5, then there are at least Bi/4 intervals Jiq′ with q′ <
q. In particular, Jiq cannot be the first price interval i.e.
q �= 1.

Lemma 4.11. If the algorithm terminated through Step 5,
then there are at least Bi/3 intervals Jiq with q < zi.

Lemma 4.12. If the algorithm terminated through Step 5
then πi(Ji2) · cinvt

i (πi(Ji2)) <
εZ
2n .

Proof: The interval Ji1 can be marked either (F,C) or

(F, F), since ci(1) = 0 while πi(1) > 0 (Observation A.5).

By Lemma 4.10, Ji1 cannot be marked (F,C). Hence, the

only case left is when Ji1 is marked (F, F). Let q be the

smallest value, if one exists, such that Jiq is marked (F,C);
note that q > Bi/4 by Lemma 4.10, and in particular q > 2.

If no such (F,C) interval exists, set q ← zi.
By definition of Jiq , all intervals between Ji1 and Jiq are

marked (F, F). Depending on whether q �= zi or q = zi,
Lemma 4.10 or Lemma 4.11 respectively imply there are

at least Bi/4 of these intervals. By Lemma 4.9, πi(Ji1) ≤
(23)

Bi/4 πi(Jiq) ≤ πi(Jiq)
4n�i/ε

, since Bi = �12 log(4n�i/ε)
.
Moreover, by Lemma 4.1(b), πi(Ji2) ≤ 2 · πi(Ji1) ≤

2πi(Jiq)
4n�i/ε

. By definition of cinvt(), cinvt(πi(Ji2)) ≤ �i; this

gives πi(Ji2) · cinvt(πi(Ji2)) ≤ 2πi(Jiq)
4n�i/ε

· �i ≤ εZ
2n .

The smoothing algorithm can give purely multiplicative

guarantees as long as the cost of the first O(log n) copies

of the items is small compared to W (opt). As an example,

suppose the cost functions are ci(k) = 0 for k ≤ d log n,

and ci(k) = ∞ for k > d log n for some constant d.

Then �i ≤ d log n, and Bi = O(log n/ε). So for d large

enough constant, Bi · c(Bi) = 0, and we get an O(log n)
approximation to the social welfare, as in [6]. (This is best

possible for online algorithms [3].)

5. PROFIT MAXIMIZATION

In this section we show how to combine an online

algorithm for social welfare maximization in the presence

of increasing costs (such as those in previous sections)

with an algorithm for a single-buyer profit maximization

(such as the algorithm in [5]) to yield an algorithm with

strong profit guarantees for any sequence of buyers under

increasing costs. This result builds on work of [4] for the

case of single-minded buyers. Specifically, suppose we are

given access to two algorithms:

• a deterministic social-welfare maximizing algorithm

A, which given production cost curves {ci}i∈I , outputs

pricing schemes {πi(·)}i∈I such that on any sequence

σ of buyers, gives the guarantee

ρ ·W (A(σ)) + β ≥W (opt(σ)) (6)

• and, a randomized single-buyer profit maximization

algorithm B, which outputs a non-negative price vector

τ for items i ∈ I and gives the guarantee that for any

buyer b, with valuation vb(),

μ · Eτ [
∑

i∈Sτ
τi] + κ ≥ maxs⊆I vb(s) (7)

where Sτ is the set of items bought by the buyer b
when the price vector τ is presented and so

∑
i∈Sτ

τi
is the resultant profit generated from buyer b.

Note that maxs⊆I vb(s) is an upper bound on maximum

profit that can be generated from buyer b. Further algorithm

B operates in a world with zero production costs, and may

take as input a parameter T such that maxS⊆I vb(S) < T ;

the parameters μ, κ may be functions of T .10 We further

assume that for every item i ∈ I and k ∈ N, the price πi(k)
set by algorithm A is at least as much as the production cost

of that copy of the item. The main result of this section is

10 [5] give such a single-buyer profit maximization algorithm, a slight
variant of which has κ = T/(2mn) and μ = O(log(mn)). The
algorithm picks a uniform price on a geometric scale for all items. It can be
combined with either of the social welfare maximizing algorithms in this
paper to give a O(log(mn))-profit maximizing algorithm+additive loss.

Theorem 5.1. Given a (ρ, β)-social welfare maximization
algorithm A (satisfying Equation (6)) and a (μ, κ)-single
buyer profit maximization algorithm B (satisfying Equa-
tion (7)), we can construct a randomized profit-maximizing
algorithm C whose expected profit over any sequence σ of
buyers is at least (W (opt(σ))−O(β + κ · |σ|)) /O(ρ+μ) .

Proof sketch: Algorithm C maintains a copy of algorithm A
running in the background and keeps updating A’s state with

the sets buyers are buying. For each buyer j, with probability

1/2, algorithm C presents the price vector as specified by the

current state of A and with probability 1/2, adds a random

price vector, generated using B, to the price vector specified

by A. The analysis, building on work of [4], is deferred to

the full version.

REFERENCES

[1] M. Andrews, S. Antonakopoulos, and L. Zhang, “Minimum-
cost network design with (dis)economies of scale,” in 51st
FOCS, 2010.

[2] A. Archer, C. Papadimitriou, K. Talwar, and É. Tardos, “An
approximate truthful mechanism for combinatorial auctions
with single parameter agents,” Internet Math., vol. 1, no. 2,
2004.

[3] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput-
competitive on-line routing,” in FOCS, 1993.

[4] B. Awerbuch, Y. Azar, and A. Meyerson, “Reducing truth-
telling online mechanisms to online optimization,” in 35th
STOC, 2003.

[5] M.-F. Balcan, A. Blum, and Y. Mansour, “Item pricing for
revenue maximization,” in 9th EC, 2008.

[6] Y. Bartal, R. Gonen, and N. Nisan, “Incentive compatible
multi unit combinatorial auctions,” in 9th TARK, 2003.

[7] L. Blumrosen and N. Nisan, “Combinatorial auctions,” in
Algorithmic Game Theory. Cambridge University Press,
2007.

[8] P. Briest, M. Hoefer, and P. Krysta., “Stackelberg network
pricing games,” in 25th STACS, 2008.

[9] P. Briest, P. Krysta, and B. Vöcking, “Approximation tech-
niques for utilitarian mechanism design,” in STOC, 2005.

[10] T. Chakraborty, Z. Huang, and S. Khanna, “Dynamic and
non-uniform pricing strategies for revenue maximization,” in
FOCS, 2009.

[11] S. Dobzinski, “Two randomized mechanisms for combinato-
rial auctions,” in APPROX/RANDOM, 2007.

[12] S. Dobzinski, N. Nisan, and M. Schapira, “Approximation
algorithms for combinatorial auctions with complement-free
bidders,” Math. of OR, vol. 35, no. 1.

[13] J. Hartline and A. Karlin, “Profit maximization in mechanism
design,” in Algorithmic Game Theory. Cambridge University
Press, 2007.

[14] R. Lavi and C. Swamy, “Truthful and near-optimal mecha-
nism design via linear programming,” in 46th FOCS, 2005.

[15] B. Lehmann, D. Lehmann, and N. Nisan, “Combinatorial
auctions with decreasing marginal utilities,” Games and Eco-
nomic Behavior, 2006.

APPENDIX

1. Variant of Structural Lemma

We now prove a variant of the structural theorem. Define

cinvt
i (p) = min{cinv

i (p),m, cinv
i (Umax)} where m is the

number of buyers and for a given set of buyers B and items

I, Umax = maxb∈B maxT⊆I
(
vb(T)−

∑
i∈T ci(1)

)
is the

maximum welfare any single buyer can achieve.

Corollary A.1. For a pricing algorithm alg with non-
decreasing price functions πi suppose there exists some
α ≥ 1 and β ≥ 0 such that for every allowed set of values
of the final prices P f

i ,∑
i∈I

∑cinvt
i (P f

i)
k=1 (P f

i − ci(k)) ≤ α
∑

i∈I profiti + β , (8)

then on every instance of buyers W (alg) ≥ 1
α (W (opt)−β) .

Proof Sketch: Note that in the proof of Lemma 2.1 just

after Equation (3), we argued that λi ≤ cinv
i (P f

i). Instead

of summing all the way to cinv
i (P f

i), we could stop the

summation at min{cinv
i (P f

i),m, cinv
i (Umax)}. Indeed, this is

because

• λi ≤ m: each buyer wants at most one copy of each

item, so at most m copies of item i can be allocated in

the optimal solution.

• λi ≤ cinv
i (Umax): each copy beyond cinv

i (Umax) has

cost strictly greater than Umax; allocation of any such

copy can only decrease the social welfare.

2. Some ‘natural’ pricing schemes

We give some natural pricing schemes and instances

where they fail to achieve good social welfare.

2.1. Pricing at Cost: While the algorithm of pricing at
cost (i.e., setting π(k) = c(k)) gives an optimal welfare

for the unlimited supply setting (where production costs are

zero), it is not a good algorithm even for “simple” cost

curves. E.g., for a single item with linear costs c(k) = k,

consider a sequence of m buyers with the ith buyer having

value i for i ∈ {1, . . . ,m}, followed by m buyers with value

m each. Pricing at cost will sell to the first m buyers and

give zero welfare for them, after which the production cost

will be too high to sell any further copies. In contrast, the

optimal solution is to sell to the second set of m buyers with

welfare m2 − m(m+1)
2 = Ω(m2).

2.2. Pricing at Twice the Cost: Another natural algorithm

is to price at twice (or any fixed multiple) of the cost of each

item. However, while this can be shown to perform well for

linear and low-degree polynomial cost functions, it performs

poorly for the case of logarithmic costs. Indeed, consider a

single item with production cost c(x) = log x, and suppose

we price the ith item at cost π(i) = 2 log i. Suppose the

first m buyers have valuations 2 log 1, 2 log 2, . . . , 2 logm
respectively, and are followed by m2 buyers with valuation

2 logm = logm2. The algorithm would sell to the first m

buyers, getting a social welfare of
∑m

i=1(2 log i − log i) =
O(m logm), after which the cost would be too high for the

remaining buyers. In contrast, optimum would sell to the

last m2 buyers, and get a social welfare of
∑m2

i=1(logm
2 −

log i) = Ω(m2).

3. Pricing at Twice the Index
Here is an example where twice-the-index algorithm fails

to produce good social welfare—e.g., consider the limited

supply-like setting where c(k) = 0 for k ≤ B, and c(k) = V
for k > B. Consider sending in B buyers with valuation

zero, followed by B buyers with valuation V − ε. Twice-

the-index prices the first B/2 copies at zero, and the rest at

V , whence we get zero welfare, whereas the optimal welfare

of B(V −ε) is achieved by selling to just the later B buyers.

4. The Necessity of Additive Loss
If we do not have an estimates for W (opt), we give a

trade-off between the additive and multiplicative loss (even

for a single item), for any algorithm where the prices are at

least the production cost.

Lemma A.2. For any deterministic pricing algorithm (in a
single item setting) acting on production costs c() and that
price copies at at least their production cost, to give the
guarantee W (alg) ≥ (W (opt)−Δ)/α, it is necessary that
α ≥ c(2)−c(1)

Δ − 1.

Proof: Let π(1) = c(1) + γ. Note that γ ≤ Δ because

otherwise a buyer sent in with valuation c(1)+ γ− ε would

buy nothing and hence W (alg) = 0 while W (opt) = γ − ε
and therefore W (alg) ≥ (W (opt)−Δ)/α would be false.

Now consider a sequence of two buyers, the first with

valuation c(1) + γ and the second with valuation c(2) − ε.

The first buyer will buy the first copy. Since the price of

second copy is at least c(2), hence the second buyer won’t

buy. Hence, W (alg) = γ while W (opt) = c(2)− c(1)− ε.

In such a scenario, for the guarantee to hold we require that

γ ≥ (c(2)− c(1)− ε−Δ)/α which implies that γ α+Δ ≥
c(2)− c(1)− ε. Noting that γ ≤ Δ and that the inequality

needs to hold for any ε ≥ 0, the claim follows.

Corollary A.3. For production curves c(x) = xd, for α =
4 d, Δ = Ω(2d/d).

5. Some observations and results for Section 4
Observation A.4. widthi(p) is non-decreasing in p.

Observation A.5. Assuming the parameter Z > 0, for every
copy x, the price set by the algorithm, πi(x) > 0.

Proposition A.6 (The left-most interval). The following
facts hold for the left-most interval Ji1 = [1, s):

a. If the procedure terminated through Step 5, then
|Ji1| ≤ widthi(πi(s)) = widthi(πi(Ji 2)).

b. If the procedure terminated through Step 11, then
πi(Ji1) = πi(Ji2).

